
vcrpy Documentation
Release 5.0.0

Kevin McCarthy

Jun 26, 2023

Contents

1 Rationale 3

2 Usage with Pytest 5

3 License 7
3.1 Contents . 7

3.1.1 Installation . 7
3.1.2 Usage . 8
3.1.3 Configuration . 11
3.1.4 Advanced Features . 12
3.1.5 API . 18
3.1.6 Debugging . 23
3.1.7 Contributing . 24
3.1.8 Changelog . 27
3.1.9 Indices and tables . 35

Python Module Index 37

Index 39

i

ii

vcrpy Documentation, Release 5.0.0

This is a Python version of Ruby’s VCR library.

Source code https://github.com/kevin1024/vcrpy

Documentation https://vcrpy.readthedocs.io/

Contents 1

https://pypi.python.org/pypi/vcrpy
https://pypi.python.org/pypi/vcrpy
https://github.com/kevin1024/vcrpy/actions
https://codecov.io/gh/kevin1024/vcrpy
https://github.com/vcr/vcr
https://github.com/kevin1024/vcrpy
https://vcrpy.readthedocs.io/

vcrpy Documentation, Release 5.0.0

2 Contents

CHAPTER 1

Rationale

VCR.py simplifies and speeds up tests that make HTTP requests. The first time you run code that is inside a VCR.py
context manager or decorated function, VCR.py records all HTTP interactions that take place through the libraries
it supports and serializes and writes them to a flat file (in yaml format by default). This flat file is called a cassette.
When the relevant piece of code is executed again, VCR.py will read the serialized requests and responses from the
aforementioned cassette file, and intercept any HTTP requests that it recognizes from the original test run and return
the responses that corresponded to those requests. This means that the requests will not actually result in HTTP traffic,
which confers several benefits including:

• The ability to work offline

• Completely deterministic tests

• Increased test execution speed

If the server you are testing against ever changes its API, all you need to do is delete your existing cassette files, and
run your tests again. VCR.py will detect the absence of a cassette file and once again record all HTTP interactions,
which will update them to correspond to the new API.

3

vcrpy Documentation, Release 5.0.0

4 Chapter 1. Rationale

CHAPTER 2

Usage with Pytest

There is a library to provide some pytest fixtures called pytest-recording https://github.com/kiwicom/pytest-recording

5

https://github.com/kiwicom/pytest-recording

vcrpy Documentation, Release 5.0.0

6 Chapter 2. Usage with Pytest

CHAPTER 3

License

This library uses the MIT license. See LICENSE.txt for more details

3.1 Contents

3.1.1 Installation

VCR.py is a package on PyPI, so you can install with pip:

pip3 install vcrpy

Compatibility

VCR.py supports Python 3.8+, and pypy.

The following HTTP libraries are supported:

• aiohttp

• boto

• boto3

• http.client

• httplib2

• requests (both 1.x and 2.x versions)

• tornado.httpclient

• urllib2

• urllib3

• httpx

7

LICENSE.txt
https://pypi.python.org
http://pypy.org

vcrpy Documentation, Release 5.0.0

Speed

VCR.py runs about 10x faster when pyyaml can use the libyaml extensions. In order for this to work, libyaml needs
to be available when pyyaml is built. Additionally the flag is cached by pip, so you might need to explicitly avoid the
cache when rebuilding pyyaml.

1. Test if pyyaml is built with libyaml. This should work:

python3 -c 'from yaml import CLoader'

2. Install libyaml according to your Linux distribution, or using Homebrew on Mac:

brew install libyaml # Mac with Homebrew
apt-get install libyaml-dev # Ubuntu
dnf install libyaml-devel # Fedora

3. Rebuild pyyaml with libyaml:

pip3 uninstall pyyaml
pip3 --no-cache-dir install pyyaml

Upgrade

New Cassette Format

The cassette format has changed in VCR.py 1.x, the VCR.py 0.x cassettes cannot be used with VCR.py 1.x. The easiest
way to upgrade is to simply delete your cassettes and re-record all of them. VCR.py also provides a migration script
that attempts to upgrade your 0.x cassettes to the new 1.x format. To use it, run the following command:

python3 -m vcr.migration PATH

The PATH can be either a path to the directory with cassettes or the path to a single cassette.

Note: Back up your cassettes files before migration. The migration should only modify cassettes using the old 0.x
format.

New serializer / deserializer API

If you made a custom serializer, you will need to update it to match the new API in version 1.0.x

• Serializers now take dicts and return strings.

• Deserializers take strings and return dicts (instead of requests, responses pair)

Ruby VCR compatibility

VCR.py does not aim to match the format of the Ruby VCR YAML files. Cassettes generated by Ruby’s VCR are not
compatible with VCR.py.

3.1.2 Usage

8 Chapter 3. License

http://pyyaml.org
http://pyyaml.org/wiki/LibYAML
http://mxcl.github.com/homebrew/

vcrpy Documentation, Release 5.0.0

import vcr
import urllib.request

with vcr.use_cassette('fixtures/vcr_cassettes/synopsis.yaml'):
response = urllib.request.urlopen('http://www.iana.org/domains/reserved').read()
assert b'Example domains' in response

Run this test once, and VCR.py will record the HTTP request to fixtures/vcr_cassettes/synopsis.
yaml. Run it again, and VCR.py will replay the response from iana.org when the http request is made. This test
is now fast (no real HTTP requests are made anymore), deterministic (the test will continue to pass, even if you are
offline, or iana.org goes down for maintenance) and accurate (the response will contain the same headers and body
you get from a real request).

You can also use VCR.py as a decorator. The same request above would look like this:

@vcr.use_cassette('fixtures/vcr_cassettes/synopsis.yaml')
def test_iana():

response = urllib.request.urlopen('http://www.iana.org/domains/reserved').read()
assert b'Example domains' in response

When using the decorator version of use_cassette, it is possible to omit the path to the cassette file.

@vcr.use_cassette()
def test_iana():

response = urllib.request.urlopen('http://www.iana.org/domains/reserved').read()
assert b'Example domains' in response

In this case, the cassette file will be given the same name as the test function, and it will be placed in the same directory
as the file in which the test is defined. See the Automatic Test Naming section below for more details.

Record Modes

VCR supports 4 record modes (with the same behavior as Ruby’s VCR):

once

• Replay previously recorded interactions.

• Record new interactions if there is no cassette file.

• Cause an error to be raised for new requests if there is a cassette file.

It is similar to the new_episodes record mode, but will prevent new, unexpected requests from being made (e.g. because
the request URI changed).

once is the default record mode, used when you do not set one.

new_episodes

• Record new interactions.

• Replay previously recorded interactions. It is similar to the once record mode, but will always record new
interactions, even if you have an existing recorded one that is similar, but not identical.

This was the default behavior in versions < 0.3.0

3.1. Contents 9

vcrpy Documentation, Release 5.0.0

none

• Replay previously recorded interactions.

• Cause an error to be raised for any new requests. This is useful when your code makes potentially dangerous
HTTP requests. The none record mode guarantees that no new HTTP requests will be made.

all

• Record new interactions.

• Never replay previously recorded interactions. This can be temporarily used to force VCR to re-record a cassette
(i.e. to ensure the responses are not out of date) or can be used when you simply want to log all HTTP requests.

Unittest Integration

Inherit from VCRTestCase for automatic recording and playback of HTTP interactions.

from vcr.unittest import VCRTestCase
import requests

class MyTestCase(VCRTestCase):
def test_something(self):

response = requests.get('http://example.com')

Similar to how VCR.py returns the cassette from the context manager, VCRTestCase makes the cassette available
as self.cassette:

self.assertEqual(len(self.cassette), 1)
self.assertEqual(self.cassette.requests[0].uri, 'http://example.com')

By default cassettes will be placed in the cassettes subdirectory next to the test, named according to the
test class and method. For example, the above test would read from and write to cassettes/MyTestCase.
test_something.yaml

The configuration can be modified by overriding methods on your subclass: _get_vcr_kwargs,
_get_cassette_library_dir and _get_cassette_name. To modify the VCR object after instantiation,
for example to add a matcher, you can hook on _get_vcr, for example:

class MyTestCase(VCRTestCase):
def _get_vcr(self, **kwargs):

myvcr = super(MyTestCase, self)._get_vcr(**kwargs)
myvcr.register_matcher('mymatcher', mymatcher)
myvcr.match_on = ['mymatcher']
return myvcr

See the source for the default implementations of these methods.

If you implement a setUp method on your test class then make sure to call the parent version super().setUp()
in your own in order to continue getting the cassettes produced.

VCRMixin

In case inheriting from VCRTestCase is difficult because of an existing class hierarchy containing tests in the base
classes, inherit from VCRMixin instead.

10 Chapter 3. License

https://github.com/kevin1024/vcrpy/blob/master/vcr/unittest.py

vcrpy Documentation, Release 5.0.0

from vcr.unittest import VCRMixin
import requests
import unittest

class MyTestMixin(VCRMixin):
def test_something(self):

response = requests.get(self.url)

class MyTestCase(MyTestMixin, unittest.TestCase):
url = 'http://example.com'

Pytest Integration

A Pytest plugin is available here : pytest-vcr.

Alternative plugin, that also provides network access blocking: pytest-recording.

3.1.3 Configuration

If you don’t like VCR’s defaults, you can set options by instantiating a VCR class and setting the options on it.

import vcr

my_vcr = vcr.VCR(
serializer='json',
cassette_library_dir='fixtures/cassettes',
record_mode='once',
match_on=['uri', 'method'],

)

with my_vcr.use_cassette('test.json'):
your http code here

Otherwise, you can override options each time you use a cassette.

with vcr.use_cassette('test.yml', serializer='json', record_mode='once'):
your http code here

Note: Per-cassette overrides take precedence over the global config.

Request matching

Request matching is configurable and allows you to change which requests VCR considers identical. The default
behavior is ['method', 'scheme', 'host', 'port', 'path', 'query']which means that requests
with both the same URL and method (ie POST or GET) are considered identical.

This can be configured by changing the match_on setting.

The following options are available :

• method (for example, POST or GET)

• uri (the full URI)

• scheme (for example, HTTP or HTTPS)

3.1. Contents 11

https://github.com/ktosiek/pytest-vcr
https://github.com/kiwicom/pytest-recording

vcrpy Documentation, Release 5.0.0

• host (the hostname of the server receiving the request)

• port (the port of the server receiving the request)

• path (the path of the request)

• query (the query string of the request)

• raw_body (the entire request body as is)

• body (the entire request body unmarshalled by content-type i.e. xmlrpc, json, form-urlencoded, falling back on
raw_body)

• headers (the headers of the request)

Backwards compatible matchers:

• url (the uri alias)

If these options don’t work for you, you can also register your own request matcher. This is described in the Advanced
section of this README.

3.1.4 Advanced Features

If you want, VCR.py can return information about the cassette it is using to record your requests and responses. This
will let you record your requests and responses and make assertions on them, to make sure that your code under test
is generating the expected requests and responses. This feature is not present in Ruby’s VCR, but I think it is a nice
addition. Here’s an example:

import vcr
import urllib2

with vcr.use_cassette('fixtures/vcr_cassettes/synopsis.yaml') as cass:
response = urllib2.urlopen('http://www.zombo.com/').read()
cass should have 1 request inside it
assert len(cass) == 1
the request uri should have been http://www.zombo.com/
assert cass.requests[0].uri == 'http://www.zombo.com/'

The Cassette object exposes the following properties which I consider part of the API. The fields are as follows:

• requests: A list of vcr.Request objects corresponding to the http requests that were made during the recording
of the cassette. The requests appear in the order that they were originally processed.

• responses: A list of the responses made.

• play_count: The number of times this cassette has played back a response.

• all_played: A boolean indicating whether all the responses have been played back.

• responses_of(request): Access the responses that match a given request

• allow_playback_repeats: A boolean indicating whether responses can be played back more than once.

The Request object has the following properties:

• uri: The full uri of the request. Example: “https://google.com/?q=vcrpy”

• scheme: The scheme used to make the request (http or https)

• host: The host of the request, for example “www.google.com”

• port: The port the request was made on

12 Chapter 3. License

https://google.com/?q=vcrpy

vcrpy Documentation, Release 5.0.0

• path: The path of the request. For example “/” or “/home.html”

• query: The parsed query string of the request. Sorted list of name, value pairs.

• method : The method used to make the request, for example “GET” or “POST”

• body: The body of the request, usually empty except for POST / PUT / etc

Backwards compatible properties:

• url: The uri alias

• protocol: The scheme alias

Register your own serializer

Don’t like JSON or YAML? That’s OK, VCR.py can serialize to any format you would like. Create your own module
or class instance with 2 methods:

• def deserialize(cassette_string)

• def serialize(cassette_dict)

Finally, register your class with VCR to use your new serializer.

import vcr

class BogoSerializer:
"""
Must implement serialize() and deserialize() methods
"""
pass

my_vcr = vcr.VCR()
my_vcr.register_serializer('bogo', BogoSerializer())

with my_vcr.use_cassette('test.bogo', serializer='bogo'):
your http here

After you register, you can set the default serializer to your new serializer

my_vcr.serializer = 'bogo'

with my_vcr.use_cassette('test.bogo'):
your http here

Register your own request matcher

Create your own method with the following signature

def my_matcher(r1, r2):

Your method receives the two requests and can either:

• Use an assert statement: return None if they match and raise AssertionError if not.

• Return a boolean: True if they match, False if not.

Note: in order to have good feedback when a matcher fails, we recommend using an assert statement with a clear
error message.

3.1. Contents 13

vcrpy Documentation, Release 5.0.0

Finally, register your method with VCR to use your new request matcher.

import vcr

def jurassic_matcher(r1, r2):
assert r1.uri == r2.uri and 'JURASSIC PARK' in r1.body, \

'required string (JURASSIC PARK) not found in request body'

my_vcr = vcr.VCR()
my_vcr.register_matcher('jurassic', jurassic_matcher)

with my_vcr.use_cassette('test.yml', match_on=['jurassic']):
your http here

After you register, you can set the default match_on to use your new matcher

my_vcr.match_on = ['jurassic']

with my_vcr.use_cassette('test.yml'):
your http here

Register your own cassette persister

Create your own persistence class, see the example below:

Your custom persister must implement both load_cassette and save_cassette methods. The
load_cassette method must return a deserialized cassette or raise either CassetteNotFoundError if no
cassette is found, or CassetteDecodeError if the cassette cannot be successfully deserialized.

Once the persister class is defined, register with VCR like so. . .

import vcr
my_vcr = vcr.VCR()

class CustomerPersister:
implement Persister methods...

my_vcr.register_persister(CustomPersister)

Filter sensitive data from the request

If you are checking your cassettes into source control, and are using some form of authentication in your tests, you
can filter out that information so it won’t appear in your cassette files. There are a few ways to do this:

Filter information from HTTP Headers

Use the filter_headers configuration option with a list of headers to filter.

with my_vcr.use_cassette('test.yml', filter_headers=['authorization']):
sensitive HTTP request goes here

14 Chapter 3. License

vcrpy Documentation, Release 5.0.0

Filter information from HTTP querystring

Use the filter_query_parameters configuration option with a list of query parameters to filter.

with my_vcr.use_cassette('test.yml', filter_query_parameters=['api_key']):
requests.get('http://api.com/getdata?api_key=secretstring')

Filter information from HTTP post data

Use the filter_post_data_parameters configuration option with a list of post data parameters to filter.

with my_vcr.use_cassette('test.yml', filter_post_data_parameters=['client_secret']):
requests.post('http://api.com/postdata', data={'api_key': 'secretstring'})

Advanced use of filter_headers, filter_query_parameters and filter_post_data_parameters

In all of the above cases, it’s also possible to pass a list of (key, value) tuples where the value can be any of the
following:

• A new value to replace the original value.

• None to remove the key/value pair. (Same as passing a simple key string.)

• A callable that returns a new value or None.

So these two calls are the same:

original (still works)
vcr = VCR(filter_headers=['authorization'])

new
vcr = VCR(filter_headers=[('authorization', None)])

Here are two examples of the new functionality:

replace with a static value (most common)
vcr = VCR(filter_headers=[('authorization', 'XXXXXX')])

replace with a callable, for example when testing
lots of different kinds of authorization.
def replace_auth(key, value, request):

auth_type = value.split(' ', 1)[0]
return '{} {}'.format(auth_type, 'XXXXXX')

Custom Request filtering

If none of these covers your request filtering needs, you can register a callback with the before_record_request
configuration option to manipulate the HTTP request before adding it to the cassette, or return None to ignore it
entirely. Here is an example that will never record requests to the '/login' path:

def before_record_cb(request):
if request.path == '/login':

return None
(continues on next page)

3.1. Contents 15

vcrpy Documentation, Release 5.0.0

(continued from previous page)

return request

my_vcr = vcr.VCR(
before_record_request=before_record_cb,

)
with my_vcr.use_cassette('test.yml'):

your http code here

You can also mutate the request using this callback. For example, you could remove all query parameters from any
requests to the '/login' path.

def scrub_login_request(request):
if request.path == '/login':

request.uri, _ = urllib.splitquery(request.uri)
return request

my_vcr = vcr.VCR(
before_record_request=scrub_login_request,

)
with my_vcr.use_cassette('test.yml'):

your http code here

Custom Response Filtering

You can also do response filtering with the before_record_response configuration option. Its usage is similar
to the above before_record_request - you can mutate the response, or return None to avoid recording the
request and response altogether. For example to hide sensitive data from the response body:

def scrub_string(string, replacement=''):
def before_record_response(response):

response['body']['string'] = response['body']['string'].replace(string,
→˓replacement)

return response
return before_record_response

my_vcr = vcr.VCR(
before_record_response=scrub_string(settings.USERNAME, 'username'),

)
with my_vcr.use_cassette('test.yml'):

your http code here

Decode compressed response

When the decode_compressed_response keyword argument of a VCR object is set to True, VCR will decom-
press “gzip” and “deflate” response bodies before recording. This ensures that these interactions become readable and
editable after being serialized.

Note: Decompression is done before any other specified Custom Response Filtering.

This option should be avoided if the actual decompression of response bodies is part of the functionality of the library
or app being tested.

16 Chapter 3. License

vcrpy Documentation, Release 5.0.0

Ignore requests

If you would like to completely ignore certain requests, you can do it in a few ways:

• Set the ignore_localhost option equal to True. This will not record any requests sent to (or responses
from) localhost, 127.0.0.1, or 0.0.0.0.

• Set the ignore_hosts configuration option to a list of hosts to ignore

• Add a before_record_request or before_record_response callback that returns None for re-
quests you want to ignore (see above).

Requests that are ignored by VCR will not be saved in a cassette, nor played back from a cassette. VCR will completely
ignore those requests as if it didn’t notice them at all, and they will continue to hit the server as if VCR were not there.

Custom Patches

If you use a custom HTTPConnection class, or otherwise make http requests in a way that requires additional
patching, you can use the custom_patches keyword argument of the VCR and Cassette objects to patch those
objects whenever a cassette’s context is entered. To patch a custom version of HTTPConnection you can do
something like this:

import where_the_custom_https_connection_lives
from vcr.stubs import VCRHTTPSConnection
my_vcr = config.VCR(custom_patches=((where_the_custom_https_connection_lives,
→˓'CustomHTTPSConnection', VCRHTTPSConnection),))

@my_vcr.use_cassette(...)

Automatic Cassette Naming

VCR.py now allows the omission of the path argument to the use_cassette function. Both of the following are now
legal/should work

@my_vcr.use_cassette
def my_test_function():

...

@my_vcr.use_cassette()
def my_test_function():

...

In both cases, VCR.py will use a path that is generated from the provided test function’s name. If no
cassette_library_dir has been set, the cassette will be in a file with the name of the test function in di-
rectory of the file in which the test function is declared. If a cassette_library_dir has been set, the cassette
will appear in that directory in a file with the name of the decorated function.

It is possible to control the path produced by the automatic naming machinery by customizing the
path_transformer and func_path_generator vcr variables. To add an extension to all cassette names,
use VCR.ensure_suffix as follows:

my_vcr = VCR(path_transformer=VCR.ensure_suffix('.yaml'))

@my_vcr.use_cassette
def my_test_function():

3.1. Contents 17

vcrpy Documentation, Release 5.0.0

Rewind Cassette

VCR.py allows to rewind a cassette in order to replay it inside the same function/test.

with vcr.use_cassette('fixtures/vcr_cassettes/synopsis.yaml') as cass:
response = urllib2.urlopen('http://www.zombo.com/').read()
assert cass.all_played
cass.rewind()
assert not cass.all_played

Playback Repeats

By default, each response in a cassette can only be matched and played back once while the cassette is in use, unless
the cassette is rewound.

If you want to allow playback repeats without rewinding the cassette, use the Cassette allow_playback_repeats
option.

with vcr.use_cassette('fixtures/vcr_cassettes/synopsis.yaml', allow_playback_
→˓repeats=True) as cass:

for x in range(10):
response = urllib2.urlopen('http://www.zombo.com/').read()

assert cass.all_played

Discards Cassette on Errors

By default VCR will save the cassette file even when there is any error inside the enclosing context/test.

If you want to save the cassette only when the test succeeds, set the Cassette record_on_exception option to
False.

try:
my_vcr = VCR(record_on_exception=False)
with my_vcr.use_cassette('fixtures/vcr_cassettes/synopsis.yaml') as cass:

response = urllib2.urlopen('http://www.zombo.com/').read()
raise RuntimeError("Oops, something happened")

except RuntimeError:
pass

Since there was an exception, the cassette file hasn't been created.
assert not os.path.exists('fixtures/vcr_cassettes/synopsis.yaml')

3.1.5 API

18 Chapter 3. License

vcrpy Documentation, Release 5.0.0

config

class vcr.config.VCR(path_transformer=None, before_record_request=None, cus-
tom_patches=(), filter_query_parameters=(), ignore_hosts=(),
record_mode=<RecordMode.ONCE: ’once’>, ignore_localhost=False,
filter_headers=(), before_record_response=None, fil-
ter_post_data_parameters=(), match_on=(’method’, ’scheme’, ’host’,
’port’, ’path’, ’query’), before_record=None, inject_cassette=False, se-
rializer=’yaml’, cassette_library_dir=None, func_path_generator=None,
decode_compressed_response=False, record_on_exception=True)

__init__(path_transformer=None, before_record_request=None, custom_patches=(), fil-
ter_query_parameters=(), ignore_hosts=(), record_mode=<RecordMode.ONCE:
’once’>, ignore_localhost=False, filter_headers=(), before_record_response=None,
filter_post_data_parameters=(), match_on=(’method’, ’scheme’, ’host’, ’port’,
’path’, ’query’), before_record=None, inject_cassette=False, serializer=’yaml’, cas-
sette_library_dir=None, func_path_generator=None, decode_compressed_response=False,
record_on_exception=True)

Initialize self. See help(type(self)) for accurate signature.

static ensure_suffix(suffix)

get_merged_config(**kwargs)

static is_test_method(method_name, function)

register_matcher(name, matcher)

register_persister(persister)

register_serializer(name, serializer)

test_case(predicate=None)

use_cassette(path=None, **kwargs)

cassette

class vcr.cassette.Cassette(path, serializer=None, persister=None,
record_mode=<RecordMode.ONCE: ’once’>,
match_on=(<function uri>, <function method>), be-
fore_record_request=None, before_record_response=None, cus-
tom_patches=(), inject=False, allow_playback_repeats=False)

A container for recorded requests and responses

__init__(path, serializer=None, persister=None, record_mode=<RecordMode.ONCE: ’once’>,
match_on=(<function uri>, <function method>), before_record_request=None,
before_record_response=None, custom_patches=(), inject=False, al-
low_playback_repeats=False)

Initialize self. See help(type(self)) for accurate signature.

all_played
Returns True if all responses have been played, False otherwise.

append(request, response)
Add a request, response pair to this cassette

can_play_response_for(request)

filter_request(request)

3.1. Contents 19

vcrpy Documentation, Release 5.0.0

find_requests_with_most_matches(request)
Get the most similar request(s) stored in the cassette of a given request as a list of tuples like this: - the
request object - the successful matchers as string - the failed matchers and the related assertion message
with the difference details as strings tuple

This is useful when a request failed to be found, we can get the similar request(s) in order to know what
have changed in the request parts.

classmethod load(**kwargs)
Instantiate and load the cassette stored at the specified path.

play_count

play_response(request)
Get the response corresponding to a request, but only if it hasn’t been played back before, and mark it as
played

requests

responses

responses_of(request)
Find the responses corresponding to a request. This function isn’t actually used by VCR internally, but is
provided as an external API.

rewind()

classmethod use(**kwargs)

classmethod use_arg_getter(arg_getter)

write_protected

class vcr.cassette.CassetteContextDecorator(cls, args_getter)
Context manager/decorator that handles installing the cassette and removing cassettes.

This class defers the creation of a new cassette instance until the point at which it is installed by context manager
or decorator. The fact that a new cassette is used with each application prevents the state of any cassette from
interfering with another.

Instances of this class are NOT reentrant as context managers. However, functions that are decorated by
CassetteContextDecorator instances ARE reentrant. See the implementation of __call__ on this
class for more details. There is also a guard against attempts to reenter instances of this class as a context
manager in __exit__.

__init__(cls, args_getter)
Initialize self. See help(type(self)) for accurate signature.

classmethod from_args(cassette_class, **kwargs)

static get_function_name(function)

matchers

vcr.matchers.body(r1, r2)

vcr.matchers.get_assertion_message(assertion_details)
Get a detailed message about the failing matcher.

vcr.matchers.get_matchers_results(r1, r2, matchers)
Get the comparison results of two requests as two list. The first returned list represents the matchers names that
passed. The second list is the failed matchers as a string with failed assertion details if any.

20 Chapter 3. License

vcrpy Documentation, Release 5.0.0

vcr.matchers.headers(r1, r2)

vcr.matchers.host(r1, r2)

vcr.matchers.method(r1, r2)

vcr.matchers.path(r1, r2)

vcr.matchers.port(r1, r2)

vcr.matchers.query(r1, r2)

vcr.matchers.raw_body(r1, r2)

vcr.matchers.requests_match(r1, r2, matchers)

vcr.matchers.scheme(r1, r2)

vcr.matchers.uri(r1, r2)

filters

vcr.filters.decode_response(response)

If the response is compressed with gzip or deflate:

1. decompress the response body

2. delete the content-encoding header

3. update content-length header to decompressed length

vcr.filters.remove_headers(request, headers_to_remove)
Wrap replace_headers() for API backward compatibility.

vcr.filters.remove_post_data_parameters(request, post_data_parameters_to_remove)
Wrap replace_post_data_parameters() for API backward compatibility.

vcr.filters.remove_query_parameters(request, query_parameters_to_remove)
Wrap replace_query_parameters() for API backward compatibility.

vcr.filters.replace_headers(request, replacements)
Replace headers in request according to replacements. The replacements should be a list of (key, value) pairs
where the value can be any of: 1. A simple replacement string value. 2. None to remove the given header. 3. A
callable which accepts (key, value, request) and returns a string value or None.

vcr.filters.replace_post_data_parameters(request, replacements)
Replace post data in request–either form data or json–according to replacements.

The replacements should be a list of (key, value) pairs where the value can be any of:

1. A simple replacement string value.

2. None to remove the given header.

3. A callable which accepts (key, value, request) and returns a string value or None.

vcr.filters.replace_query_parameters(request, replacements)
Replace query parameters in request according to replacements.

The replacements should be a list of (key, value) pairs where the value can be any of:

1. A simple replacement string value.

2. None to remove the given header.

3. A callable which accepts (key, value, request) and returns a string value or None.

3.1. Contents 21

vcrpy Documentation, Release 5.0.0

request

class vcr.request.HeadersDict(data=None, **kwargs)
There is a weird quirk in HTTP. You can send the same header twice. For this reason, headers are represented
by a dict, with lists as the values. However, it appears that HTTPlib is completely incapable of sending the same
header twice. This puts me in a weird position: I want to be able to accurately represent HTTP headers in cas-
settes, but I don’t want the extra step of always having to do [0] in the general case, i.e. request.headers[‘key’][0]

In addition, some servers sometimes send the same header more than once, and httplib can deal with this
situation.

Furthermore, I wanted to keep the request and response cassette format as similar as possible.

For this reason, in cassettes I keep a dict with lists as keys, but once deserialized into VCR, I keep them as plain,
naked dicts.

class vcr.request.Request(method, uri, body, headers)
VCR’s representation of a request.

__init__(method, uri, body, headers)
Initialize self. See help(type(self)) for accurate signature.

add_header(key, value)

body

headers

host

path

port

protocol

query

scheme

url

serialize

vcr.serialize.CASSETTE_FORMAT_VERSION = 1
Just a general note on the serialization philosophy here: I prefer cassettes to be human-readable if possible.
Yaml serializes bytestrings to !!binary, which isn’t readable, so I would like to serialize to strings and from
strings, which yaml will encode as utf-8 automatically. All the internal HTTP stuff expects bytestrings, so this
whole serialization process feels backwards.

Serializing: bytestring -> string (yaml persists to utf-8) Deserializing: string (yaml converts from utf-8) ->
bytestring

vcr.serialize.deserialize(cassette_string, serializer)

vcr.serialize.serialize(cassette_dict, serializer)

patch

Utilities for patching in cassettes

22 Chapter 3. License

vcrpy Documentation, Release 5.0.0

class vcr.patch.CassettePatcherBuilder(cassette)

__init__(cassette)
Initialize self. See help(type(self)) for accurate signature.

build()

class vcr.patch.ConnectionRemover(connection_class)

__init__(connection_class)
Initialize self. See help(type(self)) for accurate signature.

add_connection_to_pool_entry(pool, connection)

remove_connection_to_pool_entry(pool, connection)

vcr.patch.force_reset()

vcr.patch.reset_patchers()

3.1.6 Debugging

VCR.py has a few log messages you can turn on to help you figure out if HTTP requests are hitting a real server or
not. You can turn them on like this:

import vcr
import requests
import logging

logging.basicConfig() # you need to initialize logging, otherwise you will not see
→˓anything from vcrpy
vcr_log = logging.getLogger("vcr")
vcr_log.setLevel(logging.INFO)

with vcr.use_cassette('headers.yml'):
requests.get('http://httpbin.org/headers')

The first time you run this, you will see:

INFO:vcr.stubs:<Request (GET) http://httpbin.org/headers> not in cassette, sending to
→˓real server

The second time, you will see:

INFO:vcr.stubs:Playing response for <Request (GET) http://httpbin.org/headers> from
→˓cassette

If you set the loglevel to DEBUG, you will also get information about which matchers didn’t match. This can help
you with debugging custom matchers.

CannotOverwriteExistingCassetteException

When a request failed to be found in an existing cassette, VCR.py tries to get the request(s) that may be similar to the
one being searched. The goal is to see which matcher(s) failed and understand what part of the failed request may
have changed. It can return multiple similar requests with :

• the matchers that have succeeded

3.1. Contents 23

vcrpy Documentation, Release 5.0.0

• the matchers that have failed

• for each failed matchers, why it has failed with an assertion message

CannotOverwriteExistingCassetteException message example :

CannotOverwriteExistingCassetteException: Can't overwrite existing cassette (
→˓'cassette.yaml') in your current record mode ('once').
No match for the request (<Request (GET) https://www.googleapis.com/?alt=json&
→˓maxResults=200>) was found.
Found 1 similar requests with 1 different matchers :

1 - (<Request (GET) https://www.googleapis.com/?alt=json&maxResults=500>).
Matchers succeeded : ['method', 'scheme', 'host', 'port', 'path']
Matchers failed :
query - assertion failure :
[('alt', 'json'), ('maxResults', '200')] != [('alt', 'json'), ('maxResults', '500')]

3.1.7 Contributing

Milestones

For anyone interested in the roadmap and projected release milestones please see the following link:

MILESTONES

Contributing Issues and PRs

• Issues and PRs will get triaged and assigned to the appropriate milestone.

• PRs get priority over issues.

• The maintainers have limited bandwidth and do so voluntarily.

So whilst reporting issues are valuable, please consider:

• contributing an issue with a toy repo that replicates the issue.

• contributing PRs is a more valuable donation of your time and effort.

Thanks again for your interest and support in VCRpy.

We really appreciate it.

Collaborators

We also have a large test matrix to cover and would like members to volunteer covering these roles.

24 Chapter 3. License

https://github.com/kevin1024/vcrpy/milestones

vcrpy Documentation, Release 5.0.0

Library Issue Triager(s) Maintainer(s) PR Reviewer(s) Release Manager(s)
core Needs support Needs support Needs support @neozenith
requests @neozenith Needs support @neozenith @neozenith
aiohttp Needs support Needs support Needs support @neozenith
urllib3 Needs support Needs support Needs support @neozenith
httplib2 Needs support Needs support Needs support @neozenith
tornado4 Needs support Needs support Needs support @neozenith
boto3 Needs support Needs support Needs support @neozenith

Role Descriptions

Issue Triager:

Simply adding these three labels for incoming issues means a lot for maintaining this project:

• bug or enhancement

• Which library does it affect? core, aiohttp, requests, urllib3, tornado4, httplib2

• If it is a bug, is it Verified Can Replicate or Requires Help Replicating

• Thanking people for raising issues. Feedback is always appreciated.

• Politely asking if they are able to link to an example repo that replicates the issue if they haven’t already.
Being able to clone and go helps the next person and we like that.

Maintainer:

This involves creating PRs to address bugs and enhancement requests. It also means maintaining the test suite, doc-
strings and documentation .

PR Reviewer:

The PR reviewer is a second set of eyes to see if:

• Are there tests covering the code paths added/modified?

• Do the tests and modifications make sense seem appropriate?

• Add specific feedback, even on approvals, why it is accepted. eg “I like how you use a context manager
there. “

• Also make sure they add a line to docs/changelog.rst to claim credit for their contribution.

Release Manager:

• Ensure CI is passing.

• Create a release on github and tag it with the changelog release notes.

• python3 setup.py build sdist bdist_wheel

• twine upload dist/*

• Go to ReadTheDocs build page and trigger a build https://readthedocs.org/projects/vcrpy/builds/

3.1. Contents 25

https://readthedocs.org/projects/vcrpy/builds/

vcrpy Documentation, Release 5.0.0

Running VCR’s test suite

The tests are all run automatically on Travis CI, but you can also run them yourself using pytest and Tox.

Tox will automatically run them in all environments VCR.py supports if they are available on your PATH. Alternatively
you can use tox-pyenv with pyenv. We recommend you read the documentation for each and see the section further
below.

The test suite is pretty big and slow, but you can tell tox to only run specific tests like this:

tox -e {pyNN}-{HTTP_LIBRARY} -- <pytest flags passed through>

tox -e py38-requests -- -v -k "'test_status_code or test_gzip'"
tox -e py38-requests -- -v --last-failed

This will run only tests that look like test_status_code or test_gzip in the test suite, and only in the python
3.8 environment that has requests installed.

Also, in order for the boto tests to run, you will need an AWS key. Refer to the boto documentation for how to set this
up. I have marked the boto tests as optional in Travis so you don’t have to worry about them failing if you submit a
pull request.

Using PyEnv with VCR’s test suite

PyEnv is a tool for managing multiple installation of python on your system. See the full documentation at their github
but we are also going to use tox-pyenv in this example:

git clone https://github.com/pyenv/pyenv ~/.pyenv

Add ~/.pyenv/bin to your PATH
export PATH="$PATH:~/.pyenv/bin"

Setup shim paths
eval "$(pyenv init -)"

Setup your local system tox tooling
pip3 install tox tox-pyenv

Install supported versions (at time of writing), this does not activate them
pyenv install 3.8.0 pypy3.8

This activates them
pyenv local 3.8.0 pypy3.8

Run the whole test suite
tox

Run the whole test suite or just part of it
tox -e lint
tox -e py38-requests

Troubleshooting on MacOSX

If you have this kind of error when running tox :

26 Chapter 3. License

https://travis-ci.org/kevin1024/vcrpy
http://pytest.org/
http://tox.testrun.org/
https://pypi.org/project/tox-pyenv/
https://github.com/pyenv/pyenv
https://boto.readthedocs.io/en/latest/getting_started.html
https://github.com/pyenv/pyenv
https://pypi.org/project/tox-pyenv/

vcrpy Documentation, Release 5.0.0

__main__.ConfigurationError: Curl is configured to use SSL, but we have
not been able to determine which SSL backend it is using. Please see PycURL
→˓documentation for how to specify the SSL backend manually.

Then you need to define some environment variables:

export PYCURL_SSL_LIBRARY=openssl
export LDFLAGS=-L/usr/local/opt/openssl/lib
export CPPFLAGS=-I/usr/local/opt/openssl/include

Reference : stackoverflow issue

3.1.8 Changelog

For a full list of triaged issues, bugs and PRs and what release they are targeted for please see the following link.

ROADMAP MILESTONES

All help in providing PRs to close out bug issues is appreciated. Even if that is providing a repo that fully replicates
issues. We have very generous contributors that have added these to bug issues which meant another contributor picked
up the bug and closed it out.

• 5.0.0

– BREAKING CHANGE: Drop support for Python 3.7. 3.7 is EOL as of 6/27/23 Thanks @jairhenrique

– BREAKING CHANGE: Custom Cassette persisters no longer catch ValueError. If you have imple-
mented a custom persister (has anyone implemented a custom persister? Let us know!) then you will
need to throw a CassetteNotFoundError when unable to find a cassette. See #681 for discussion and
reason for this change. Thanks @amosjyng for the PR and the review from @hartwork

• 4.4.0

– HUGE thanks to @hartwork for all the work done on this release!

– Bring vcr/unittest in to vcrpy as a full feature of vcr instead of a separate library. Big thanks to
@hartwork for doing this and to @agriffis for originally creating the library

– Make decompression robust towards already decompressed input (thanks @hartwork)

– Bugfix: Add read1 method (fixes compatibility with biopython), thanks @mghantous

– Bugfix: Prevent filters from corrupting request (thanks @abramclark)

– Bugfix: Add support for response.raw.stream() to fix urllib v2 compat

– Bugfix: Replace assert with raise AssertionError: fixes support for PYTHONOPTIMIZE=1

– Add pytest.mark.online to run test suite offline, thanks @jspricke

– use python3 and pip3 binaries to ease debian packaging (thanks @hartwork)

– Add codespell (thanks @mghantous)

• 4.3.1

– Support urllib3 v1 and v2. NOTE: there is an issue running urllib3 v2 on Python older than 3.10, so
this is currently blocked in the requirements. Hopefully we can resolve this situation in the future.
Thanks to @shifqu, hartwork, jairhenrique, pquentin, and vEpiphyte for your work on this.

• 4.3.0

– Add support for Python 3.11 (Thanks @evgeni)

3.1. Contents 27

https://stackoverflow.com/questions/51019622/curl-is-configured-to-use-ssl-but-we-have-not-been-able-to-determine-which-ssl
https://github.com/kevin1024/vcrpy/milestones

vcrpy Documentation, Release 5.0.0

– Drop support for botocore <1.11.0 and requests <2.16.2 (thanks @hartwork)

– Bugfix: decode_compressed_response raises exception on empty responses. Thanks @CharString

– Don’t save requests from decorated tests if decorated test fails (thanks @dan-passaro)

– Fix not calling all the exit stack when record_on_exception is False (thanks @Terseus)

– Various CI, documentation, testing, and formatting improvements (Thanks @jairhenrique, @dan-
passaro, @hartwork, and Terseus)

• 4.2.1

– Fix a bug where the first request in a redirect chain was not being recorded with aiohttp

– Various typos and small fixes, thanks @jairhenrique, @timgates42

• 4.2.0

– Drop support for python < 3.7, thanks @jairhenrique, @IvanMalison, @AthulMuralidhar

– Various aiohtt bigfixes (thanks @pauloromeira and boechat107)

– Bugfix: filter_post_data_parameters not working with aiohttp. Thank you @vprakashplanview,
@scop, @jairhenrique, and @cinemascop89

– Bugfix: Some random misspellings (thanks @scop)

– Migrate the CI suite to Github Actions from Travis (thanks @jairhenrique and @cclauss)

– Various documentation and code misspelling fixes (thanks @scop and @Justintime50)

– Bugfix: httpx support (select between allow_redirects/follow_redirects) (thanks @immerrr)

– Bugfix: httpx support (select between allow_redirects/follow_redirects) (thanks @immerrr)

• 4.1.1

– Fix HTTPX support for versions greater than 0.15 (thanks @jairhenrique)

– Include a trailing newline on json cassettes (thanks @AaronRobson)

• 4.1.0

– Add support for httpx!! (thanks @herdigiorgi)

– Add the new allow_playback_repeats option (thanks @tysonholub)

– Several aiohttp improvements (cookie support, multiple headers with same key) (Thanks
@pauloromeira)

– Use enums for record modes (thanks @aaronbannin)

– Bugfix: Do not redirect on 304 in aiohttp (Thanks @royjs)

– Bugfix: Fix test suite by switching to mockbin (thanks @jairhenrique)

• 4.0.2

– Fix mock imports as reported in #504 by @llybin. Thank you.

• 4.0.1

– Fix logo alignment for PyPI

• 4.0.0

– Remove Python2 support (@hugovk)

– Add Python 3.8 TravisCI support (@neozenith)

28 Chapter 3. License

vcrpy Documentation, Release 5.0.0

– Updated the logo to a modern material design (@sean0x42)

• 3.0.0

– This release is a breaking change as it changes how aiohttp follows redirects and your cassettes may
need to be re-recorded with this update.

– Fix multiple requests being replayed per single request in aiohttp stub #495 (@nickdirienzo)

– Add support for request_info on mocked responses in aiohttp stub #495 (@nickdirienzo)

– doc: fixed variable name (a -> cass) in an example for rewind #492 (@yarikoptic)

• 2.1.1

– Format code with black (@neozenith)

– Use latest pypy3 in Travis (@hugovk)

– Improve documentation about custom matchers (@gward)

– Fix exception when body is empty (@keithprickett)

– Add pytest-recording to the documentation as an alternative Pytest plugin (@Stranger6667)

– Fix yarl and python3.5 version issue (@neozenith)

– Fix header matcher for boto3 - fixes #474 (@simahawk)

• 2.1.0

– Add a rewind method to reset a cassette (thanks @khamidou)

– New error message with more details on why the cassette failed to play a request (thanks @arthurHa-
mon2, @neozenith)

– Handle connect tunnel URI (thanks @jeking3)

– Add code coverage to the project (thanks @neozenith)

– Drop support to python 3.4

– Add deprecation warning on python 2.7, next major release will drop python 2.7 support

– Fix build problems on requests tests (thanks to @dunossauro)

– Fix matching on ‘body’ failing when Unicode symbols are present in them (thanks @valgur)

– Fix bugs on aiohttp integration (thanks @graingert, @steinnes, @stj, @lamenezes, @lmazuel)

– Fix Biopython incompatibility (thanks @rishab121)

– Fix Boto3 integration (thanks @1oglop1, @arthurHamon2)

• 2.0.1

– Fix bug when using vcrpy with python 3.4

• 2.0.0

– Support python 3.7 (fix httplib2 and urllib2, thanks @felixonmars)

– [#356] Fixes before_record_response so the original response isn’t changed (thanks @kgraves)

– Fix requests stub when using proxy (thanks @samuelfekete @daneoshiga)

– (only for aiohttp stub) Drop support to python 3.4 asyncio.coroutine (aiohttp doesn’t support python
it anymore)

– Fix aiohttp stub to work with aiohttp client (thanks @stj)

3.1. Contents 29

vcrpy Documentation, Release 5.0.0

– Fix aiohttp stub to accept content type passed

– Improve docs (thanks @adamchainz)

• 1.13.0

– Fix support to latest aiohttp version (3.3.2). Fix content-type bug in aiohttp stub. Save URL with
query params properly when using aiohttp.

• 1.12.0

– Fix support to latest aiohttp version (3.2.1), Adapted setup to PEP508, Support binary responses on
aiohttp, Dropped support for EOL python versions (2.6 and 3.3)

• 1.11.1

– Fix compatibility with newest requests and urllib3 releases

• 1.11.0

– Allow injection of persistence methods + bugfixes (thanks @j-funk and @IvanMalison),

– Support python 3.6 + CI tests (thanks @derekbekoe and @graingert),

– Support pytest-asyncio coroutines (thanks @graingert)

• 1.10.5

– Added a fix to httplib2 (thanks @carlosds730), Fix an issue with

– aiohttp (thanks @madninja), Add missing requirement yarl (thanks @lamenezes),

– Remove duplicate mock triple (thanks @FooBarQuaxx)

• 1.10.4

– Fix an issue with asyncio aiohttp (thanks @madninja)

• 1.10.3

– Fix some issues with asyncio and params (thanks @anovikov1984 and @lamenezes)

– Fix some issues with cassette serialize / deserialize and empty response bodies (thanks @gRoussac
and @dz0ny)

• 1.10.2

– Fix 1.10.1 release - add aiohttp support back in

• 1.10.1

– [bad release] Fix build for Fedora package + python2 (thanks @puiterwijk and @lamenezes)

• 1.10.0

– Add support for aiohttp (thanks @lamenezes)

• 1.9.0

– Add support for boto3 (thanks @desdm, @foorbarna).

– Fix deepcopy issue for response headers when decode_compressed_response is enabled (thanks
@nickdirienzo)

• 1.8.0

– Fix for Serialization errors with JSON adapter (thanks @aliaksandrb).

– Avoid concatenating bytes with strings (thanks @jaysonsantos).

30 Chapter 3. License

vcrpy Documentation, Release 5.0.0

– Exclude __pycache__ dirs & compiled files in sdist (thanks @koobs).

– Fix Tornado support behavior for Tornado 3 (thanks @abhinav).

– decode_compressed_response option and filter (thanks @jayvdb).

• 1.7.4 [#217]

– Make use_cassette decorated functions actually return a value (thanks @bcen).

– [#199] Fix path transformation defaults.

– Better headers dictionary management.

• 1.7.3 [#188]

– additional_matchers kwarg on use_cassette.

– [#191] Actually support passing multiple before_record_request functions (thanks @agriffis).

• 1.7.2

– [#186] Get effective_url in tornado (thanks @mvschaik)

– [#187] Set request_time on Response object in tornado (thanks @abhinav).

• 1.7.1

– [#183] Patch fetch_impl instead of the entire HTTPClient class for Tornado (thanks @abhinav).

• 1.7.0

– [#177] Properly support coroutine/generator decoration.

– [#178] Support distribute (thanks @graingert). [#163] Make compatibility between python2 and
python3 recorded cassettes more robust (thanks @gward).

• 1.6.1

– [#169] Support conditional requirements in old versions of pip

– Fix RST parse errors generated by pandoc

– [Tornado] Fix unsupported features exception not being raised

– [#166] content-aware body matcher.

• 1.6.0

– [#120] Tornado support (thanks @abhinav)

– [#147] packaging fixes (thanks @graingert)

– [#158] allow filtering post params in requests (thanks @MrJohz)

– [#140] add xmlrpclib support (thanks @Diaoul).

• 1.5.2

– Fix crash when cassette path contains cassette library directory (thanks @gazpachoking).

• 1.5.0

– Automatic cassette naming and ‘application/json’ post data filtering (thanks @marco-santamaria).

• 1.4.2

– Fix a bug caused by requests 2.7 and chunked transfer encoding

• 1.4.1

3.1. Contents 31

vcrpy Documentation, Release 5.0.0

– Include README, tests, LICENSE in package. Thanks @ralphbean.

• 1.4.0

– Filter post data parameters (thanks @eadmundo)

– Support for posting files through requests, inject_cassette kwarg to access cassette from
use_cassette decorated function, with_current_defaults actually works (thanks @sam-
stav).

• 1.3.0

– Fix/add support for urllib3 (thanks @aisch)

– Fix default port for https (thanks @abhinav).

• 1.2.0

– Add custom_patches argument to VCR/Cassette objects to allow users to stub custom classes when
cassettes become active.

• 1.1.4

– Add force reset around calls to actual connection from stubs, to ensure compatibility with the version
of httplib/urlib2 in python 2.7.9.

• 1.1.3

– Fix python3 headers field (thanks @rtaboada)

– fix boto test (thanks @telaviv)

– fix new_episodes record mode (thanks @jashugan),

– fix Windows connectionpool stub bug (thanks @gazpachoking)

– add support for requests 2.5

• 1.1.2

– Add urllib==1.7.1 support.

– Make json serialize error handling correct

– Improve logging of match failures.

• 1.1.1

– Use function signature preserving wrapt.decorator to write the decorator version of use_cassette
in order to ensure compatibility with py.test fixtures and python 2.

– Move all request filtering into the before_record_callable.

• 1.1.0

– Add before_record_response. Fix several bugs related to the context management of cas-
settes.

• 1.0.3

– Fix an issue with requests 2.4 and make sure case sensitivity is consistent across python versions

• 1.0.2

– Fix an issue with requests 2.3

• 1.0.1

– Fix a bug with the new ignore requests feature and the once record mode

32 Chapter 3. License

vcrpy Documentation, Release 5.0.0

• 1.0.0

– BACKWARDS INCOMPATIBLE: Please see the ‘upgrade’ section in the README. Take a look at the
matcher section as well, you might want to update your match_on settings.

– Add support for filtering sensitive data from requests, matching query strings after the order changes
and improving the built-in matchers, (thanks to @mshytikov)

– Support for ignoring requests to certain hosts, bump supported Python3 version to 3.4, fix some bugs
with Boto support (thanks @marusich)

– Fix error with URL field capitalization in README (thanks @simon-weber)

– Added some log messages to help with debugging

– Added all_played property on cassette (thanks @mshytikov)

• 0.7.0

– VCR.py now supports Python 3! (thanks @asundg)

– Also I refactored the stub connections quite a bit to add support for the putrequest and putheader calls.

– This version also adds support for httplib2 (thanks @nilp0inter).

– I have added a couple tests for boto since it is an http client in its own right.

– Finally, this version includes a fix for a bug where requests wasn’t being patched properly (thanks
@msabramo).

• 0.6.0

– Store response headers as a list since a HTTP response can have the same header twice (happens with set-cookie sometimes).

* This has the added benefit of preserving the order of headers.

* Thanks @smallcode for the bug report leading to this change.

– I have made an effort to ensure backwards compatibility with the old cassettes’ header storage mech-
anism, but if you want to upgrade to the new header storage, you should delete your cassettes and
re-record them.

– Also this release adds better error messages (thanks @msabramo)

– and adds support for using VCR as a decorator (thanks @smallcode for the motivation)

• 0.5.0

– Change the response_of method to responses_of since cassettes can now contain more than one response for a request.

* Since this changes the API, I’m bumping the version.

– Also includes 2 bugfixes:

* a better error message when attempting to overwrite a cassette file,

* and a fix for a bug with requests sessions (thanks @msabramo)

• 0.4.0

– Change default request recording behavior for multiple requests.

* If you make the same request multiple times to the same URL, the response might be different
each time (maybe the response has a timestamp in it or something), so this will make the same
request multiple times and save them all.

3.1. Contents 33

vcrpy Documentation, Release 5.0.0

* Then, when you are replaying the cassette, the responses will be played back in the same order
in which they were received.

* If you were making multiple requests to the same URL in a cassette before version 0.4.0, you
might need to regenerate your cassette files.

* Also, removes support for the cassette.play_count counter API, since individual requests aren’t
unique anymore.

* A cassette might contain the same request several times.

– Also removes secure overwrite feature since that was breaking overwriting files in Windows

– And fixes a bug preventing request’s automatic body decompression from working.

• 0.3.5

– Fix compatibility with requests 2.x

• 0.3.4

– Bugfix: close file before renaming it. This fixes an issue on Windows. Thanks @smallcode for the
fix.

• 0.3.3

– Bugfix for error message when an unregistered custom matcher was used

• 0.3.2

– Fix issue with new config syntax and the match_on parameter. Thanks, @chromy!

• 0.3.1

– Fix issue causing full paths to be sent on the HTTP request line.

• 0.3.0

– Backwards incompatible release

– Added support for record modes, and changed the default recording behavior to the “once” record
mode. Please see the documentation on record modes for more.

– Added support for custom request matching, and changed the default request matching behavior to
match only on the URL and method.

– Also, improved the httplib mocking to add support for the HTTPConnection.send() method.

* This means that requests won’t actually be sent until the response is read, since I need to record
the entire request in order to match up the appropriate response.

* I don’t think this should cause any issues unless you are sending requests without ever loading
the response (which none of the standard httplib wrappers do, as far as I know).

– Thanks to @fatuhoku for some of the ideas and the motivation behind this release.

• 0.2.1

– Fixed missing modules in setup.py

• 0.2.0

– Added configuration API, which lets you configure some settings on VCR (see the README).

– Also, VCR no longer saves cassettes if they haven’t changed at all and supports JSON as well as
YAML (thanks @sirpengi).

34 Chapter 3. License

vcrpy Documentation, Release 5.0.0

– Added amazing new skeumorphic logo, thanks @hairarrow.

• 0.1.0

– backwards incompatible release - delete your old cassette files

– This release adds the ability to access the cassette to make assertions on it

– as well as a major code refactor thanks to @dlecocq.

– It also fixes a couple longstanding bugs with redirects and HTTPS. [#3 and #4]

• 0.0.4

– If you have libyaml installed, vcrpy will use the c bindings instead. Speed up your tests! Thanks
@dlecocq

• 0.0.3

– Add support for requests 1.2.3. Support for older versions of requests dropped (thanks @vitormazzi
and @bryanhelmig)

• 0.0.2

– Add support for requests / urllib3

• 0.0.1

– Initial Release

3.1.9 Indices and tables

• genindex

• modindex

• search

3.1. Contents 35

vcrpy Documentation, Release 5.0.0

36 Chapter 3. License

Python Module Index

v
vcr.cassette, 19
vcr.config, 19
vcr.filters, 21
vcr.matchers, 20
vcr.patch, 22
vcr.request, 22
vcr.serialize, 22

37

vcrpy Documentation, Release 5.0.0

38 Python Module Index

Index

Symbols
__init__() (vcr.cassette.Cassette method), 19
__init__() (vcr.cassette.CassetteContextDecorator

method), 20
__init__() (vcr.config.VCR method), 19
__init__() (vcr.patch.CassettePatcherBuilder

method), 23
__init__() (vcr.patch.ConnectionRemover method),

23
__init__() (vcr.request.Request method), 22

A
add_connection_to_pool_entry()

(vcr.patch.ConnectionRemover method),
23

add_header() (vcr.request.Request method), 22
all_played (vcr.cassette.Cassette attribute), 19
append() (vcr.cassette.Cassette method), 19

B
body (vcr.request.Request attribute), 22
body() (in module vcr.matchers), 20
build() (vcr.patch.CassettePatcherBuilder method),

23

C
can_play_response_for() (vcr.cassette.Cassette

method), 19
Cassette (class in vcr.cassette), 19
CASSETTE_FORMAT_VERSION (in module

vcr.serialize), 22
CassetteContextDecorator (class in

vcr.cassette), 20
CassettePatcherBuilder (class in vcr.patch), 22
ConnectionRemover (class in vcr.patch), 23

D
decode_response() (in module vcr.filters), 21
deserialize() (in module vcr.serialize), 22

E
ensure_suffix() (vcr.config.VCR static method), 19

F
filter_request() (vcr.cassette.Cassette method),

19
find_requests_with_most_matches()

(vcr.cassette.Cassette method), 19
force_reset() (in module vcr.patch), 23
from_args() (vcr.cassette.CassetteContextDecorator

class method), 20

G
get_assertion_message() (in module

vcr.matchers), 20
get_function_name()

(vcr.cassette.CassetteContextDecorator static
method), 20

get_matchers_results() (in module
vcr.matchers), 20

get_merged_config() (vcr.config.VCR method), 19

H
headers (vcr.request.Request attribute), 22
headers() (in module vcr.matchers), 20
HeadersDict (class in vcr.request), 22
host (vcr.request.Request attribute), 22
host() (in module vcr.matchers), 21

I
is_test_method() (vcr.config.VCR static method),

19

L
load() (vcr.cassette.Cassette class method), 20

M
method() (in module vcr.matchers), 21

39

vcrpy Documentation, Release 5.0.0

P
path (vcr.request.Request attribute), 22
path() (in module vcr.matchers), 21
play_count (vcr.cassette.Cassette attribute), 20
play_response() (vcr.cassette.Cassette method), 20
port (vcr.request.Request attribute), 22
port() (in module vcr.matchers), 21
protocol (vcr.request.Request attribute), 22

Q
query (vcr.request.Request attribute), 22
query() (in module vcr.matchers), 21

R
raw_body() (in module vcr.matchers), 21
register_matcher() (vcr.config.VCR method), 19
register_persister() (vcr.config.VCR method),

19
register_serializer() (vcr.config.VCR method),

19
remove_connection_to_pool_entry()

(vcr.patch.ConnectionRemover method),
23

remove_headers() (in module vcr.filters), 21
remove_post_data_parameters() (in module

vcr.filters), 21
remove_query_parameters() (in module

vcr.filters), 21
replace_headers() (in module vcr.filters), 21
replace_post_data_parameters() (in module

vcr.filters), 21
replace_query_parameters() (in module

vcr.filters), 21
Request (class in vcr.request), 22
requests (vcr.cassette.Cassette attribute), 20
requests_match() (in module vcr.matchers), 21
reset_patchers() (in module vcr.patch), 23
responses (vcr.cassette.Cassette attribute), 20
responses_of() (vcr.cassette.Cassette method), 20
rewind() (vcr.cassette.Cassette method), 20

S
scheme (vcr.request.Request attribute), 22
scheme() (in module vcr.matchers), 21
serialize() (in module vcr.serialize), 22

T
test_case() (vcr.config.VCR method), 19

U
uri() (in module vcr.matchers), 21
url (vcr.request.Request attribute), 22
use() (vcr.cassette.Cassette class method), 20

use_arg_getter() (vcr.cassette.Cassette class
method), 20

use_cassette() (vcr.config.VCR method), 19

V
VCR (class in vcr.config), 19
vcr.cassette (module), 19
vcr.config (module), 19
vcr.filters (module), 21
vcr.matchers (module), 20
vcr.patch (module), 22
vcr.request (module), 22
vcr.serialize (module), 22

W
write_protected (vcr.cassette.Cassette attribute),

20

40 Index

	Rationale
	Usage with Pytest
	License
	Contents
	Installation
	Usage
	Configuration
	Advanced Features
	API
	Debugging
	Contributing
	Changelog
	Indices and tables

	Python Module Index
	Index

