
vcrpy Documentation
Release 1.7.4

Kevin McCarthy

October 02, 2016

Contents

1 Rationale 3

2 Support 5

3 License 7

4 Contents 9
4.1 Installation . 9
4.2 Usage . 10
4.3 Configuration . 12
4.4 Advanced Features . 13
4.5 API . 18
4.6 Debugging . 20
4.7 Contributing . 20
4.8 Changelog . 21

Python Module Index 25

i

ii

vcrpy Documentation, Release 1.7.4

This is a Python version of Ruby’s VCR library.

Source code https://github.com/kevin1024/vcrpy

Documentation https://vcrpy.readthedocs.io/

Contents 1

https://github.com/vcr/vcr
https://github.com/kevin1024/vcrpy
https://vcrpy.readthedocs.io/

vcrpy Documentation, Release 1.7.4

2 Contents

CHAPTER 1

Rationale

VCR.py simplifies and speeds up tests that make HTTP requests. The first time you run code that is inside a VCR.py
context manager or decorated function, VCR.py records all HTTP interactions that take place through the libraries
it supports and serializes and writes them to a flat file (in yaml format by default). This flat file is called a cassette.
When the relevant piece of code is executed again, VCR.py will read the serialized requests and responses from the
aforementioned cassette file, and intercept any HTTP requests that it recognizes from the original test run and return
the responses that corresponded to those requests. This means that the requests will not actually result in HTTP traffic,
which confers several benefits including:

• The ability to work offline

• Completely deterministic tests

• Increased test execution speed

If the server you are testing against ever changes its API, all you need to do is delete your existing cassette files, and
run your tests again. VCR.py will detect the absence of a cassette file and once again record all HTTP interactions,
which will update them to correspond to the new API.

3

vcrpy Documentation, Release 1.7.4

4 Chapter 1. Rationale

CHAPTER 2

Support

VCR.py works great with the following HTTP clients:

• requests

• aiohttp

• urllib3

• tornado

• urllib2

• boto

• boto3

5

vcrpy Documentation, Release 1.7.4

6 Chapter 2. Support

CHAPTER 3

License

This library uses the MIT license. See LICENSE.txt for more details

7

vcrpy Documentation, Release 1.7.4

8 Chapter 3. License

CHAPTER 4

Contents

4.1 Installation

VCR.py is a package on PyPI, so you can install with pip:

pip install vcrpy

4.1.1 Compatibility

VCR.py supports Python 2.6 and 2.7, 3.3, 3.4, and pypy.

The following http libraries are supported:

• urllib2

• urllib3

• http.client (python3)

• requests (both 1.x and 2.x versions)

• httplib2

• boto

• Tornado’s AsyncHTTPClient

4.1.2 Speed

VCR.py runs about 10x faster when pyyaml can use the libyaml extensions. In order for this to work, libyaml needs
to be available when pyyaml is built. Additionally the flag is cached by pip, so you might need to explicitly avoid the
cache when rebuilding pyyaml.

1. Test if pyyaml is built with libyaml. This should work:

python -c 'from yaml import CLoader'

2. Install libyaml according to your Linux distribution, or using Homebrew on Mac:

brew install libyaml # Mac with Homebrew
apt-get install libyaml-dev # Ubuntu
dnf install libyaml-dev # Fedora

9

https://pypi.python.org
http://pypy.org
http://pyyaml.org
http://pyyaml.org/wiki/LibYAML
http://mxcl.github.com/homebrew/

vcrpy Documentation, Release 1.7.4

3. Rebuild pyyaml with libyaml:

pip uninstall pyyaml
pip --no-cache-dir install pyyaml

4.1.3 Upgrade

New Cassette Format

The cassette format has changed in VCR.py 1.x, the VCR.py 0.x cassettes cannot be used with VCR.py 1.x. The easiest
way to upgrade is to simply delete your cassettes and re-record all of them. VCR.py also provides a migration script
that attempts to upgrade your 0.x cassettes to the new 1.x format. To use it, run the following command:

python -m vcr.migration PATH

The PATH can be either a path to the directory with cassettes or the path to a single cassette.

Note: Back up your cassettes files before migration. The migration should only modify cassettes using the old 0.x
format.

New serializer / deserializer API

If you made a custom serializer, you will need to update it to match the new API in version 1.0.x

• Serializers now take dicts and return strings.

• Deserializers take strings and return dicts (instead of requests, responses pair)

4.1.4 Ruby VCR compatibility

VCR.py does not aim to match the format of the Ruby VCR YAML files. Cassettes generated by Ruby’s VCR are not
compatible with VCR.py.

4.2 Usage

import vcr
import urllib2

with vcr.use_cassette('fixtures/vcr_cassettes/synopsis.yaml'):
response = urllib2.urlopen('http://www.iana.org/domains/reserved').read()
assert 'Example domains' in response

Run this test once, and VCR.py will record the HTTP request to fixtures/vcr_cassettes/synopsis.yml.
Run it again, and VCR.py will replay the response from iana.org when the http request is made. This test is now fast
(no real HTTP requests are made anymore), deterministic (the test will continue to pass, even if you are offline, or
iana.org goes down for maintenance) and accurate (the response will contain the same headers and body you get from
a real request).

You can also use VCR.py as a decorator. The same request above would look like this:

@vcr.use_cassette('fixtures/vcr_cassettes/synopsis.yaml')
def test_iana():

response = urllib2.urlopen('http://www.iana.org/domains/reserved').read()
assert 'Example domains' in response

10 Chapter 4. Contents

vcrpy Documentation, Release 1.7.4

When using the decorator version of use_cassette, it is possible to omit the path to the cassette file.

@vcr.use_cassette()
def test_iana():

response = urllib2.urlopen('http://www.iana.org/domains/reserved').read()
assert 'Example domains' in response

In this case, the cassette file will be given the same name as the test function, and it will be placed in the same directory
as the file in which the test is defined. See the Automatic Test Naming section below for more details.

4.2.1 Record Modes

VCR supports 4 record modes (with the same behavior as Ruby’s VCR):

once

• Replay previously recorded interactions.

• Record new interactions if there is no cassette file.

• Cause an error to be raised for new requests if there is a cassette file.

It is similar to the new_episodes record mode, but will prevent new, unexpected requests from being made (i.e. because
the request URI changed).

once is the default record mode, used when you do not set one.

new_episodes

• Record new interactions.

• Replay previously recorded interactions. It is similar to the once record mode, but will always record new
interactions, even if you have an existing recorded one that is similar, but not identical.

This was the default behavior in versions < 0.3.0

none

• Replay previously recorded interactions.

• Cause an error to be raised for any new requests. This is useful when your code makes potentially dangerous
HTTP requests. The none record mode guarantees that no new HTTP requests will be made.

all

• Record new interactions.

• Never replay previously recorded interactions. This can be temporarily used to force VCR to re-record a cassette
(i.e. to ensure the responses are not out of date) or can be used when you simply want to log all HTTP requests.

4.2.2 Unittest Integration

While it’s possible to use the context manager or decorator forms with unittest, there’s also a VCRTestCase provided
separately by vcrpy-unittest.

4.2. Usage 11

https://github.com/agriffis/vcrpy-unittest

vcrpy Documentation, Release 1.7.4

4.3 Configuration

If you don’t like VCR’s defaults, you can set options by instantiating a VCR class and setting the options on it.

import vcr

my_vcr = vcr.VCR(
serializer='json',
cassette_library_dir='fixtures/cassettes',
record_mode='once',
match_on=['uri', 'method'],

)

with my_vcr.use_cassette('test.json'):
your http code here

Otherwise, you can override options each time you use a cassette.

with vcr.use_cassette('test.yml', serializer='json', record_mode='once'):
your http code here

Note: Per-cassette overrides take precedence over the global config.

4.3.1 Request matching

Request matching is configurable and allows you to change which requests VCR considers identical. The default
behavior is [’method’, ’scheme’, ’host’, ’port’, ’path’, ’query’]which means that requests
with both the same URL and method (ie POST or GET) are considered identical.

This can be configured by changing the match_on setting.

The following options are available :

• method (for example, POST or GET)

• uri (the full URI.)

• host (the hostname of the server receiving the request)

• port (the port of the server receiving the request)

• path (the path of the request)

• query (the query string of the request)

• raw_body (the entire request body as is)

• body (the entire request body unmarshalled by content-type i.e. xmlrpc, json, form-urlencoded, falling back on
raw_body)

• headers (the headers of the request)

Backwards compatible matchers:

• url (the uri alias)

If these options don’t work for you, you can also register your own request matcher. This is described in the Advanced
section of this README.

12 Chapter 4. Contents

vcrpy Documentation, Release 1.7.4

4.4 Advanced Features

If you want, VCR.py can return information about the cassette it is using to record your requests and responses. This
will let you record your requests and responses and make assertions on them, to make sure that your code under test
is generating the expected requests and responses. This feature is not present in Ruby’s VCR, but I think it is a nice
addition. Here’s an example:

import vcr
import urllib2

with vcr.use_cassette('fixtures/vcr_cassettes/synopsis.yaml') as cass:
response = urllib2.urlopen('http://www.zombo.com/').read()
cass should have 1 request inside it
assert len(cass) == 1
the request uri should have been http://www.zombo.com/
assert cass.requests[0].uri == 'http://www.zombo.com/'

The Cassette object exposes the following properties which I consider part of the API. The fields are as follows:

• requests: A list of vcr.Request objects corresponding to the http requests that were made during the recording
of the cassette. The requests appear in the order that they were originally processed.

• responses: A list of the responses made.

• play_count: The number of times this cassette has played back a response.

• all_played: A boolean indicating whether all the responses have been played back.

• responses_of(request): Access the responses that match a given request

The Request object has the following properties:

• uri: The full uri of the request. Example: “https://google.com/?q=vcrpy“

• scheme: The scheme used to make the request (http or https)

• host: The host of the request, for example “www.google.com”

• port: The port the request was made on

• path: The path of the request. For example “/” or “/home.html”

• query: The parsed query string of the request. Sorted list of name, value pairs.

• method : The method used to make the request, for example “GET” or “POST”

• body: The body of the request, usually empty except for POST / PUT / etc

Backwards compatible properties:

• url: The uri alias

• protocol: The scheme alias

4.4.1 Register your own serializer

Don’t like JSON or YAML? That’s OK, VCR.py can serialize to any format you would like. Create your own module
or class instance with 2 methods:

• def deserialize(cassette_string)

• def serialize(cassette_dict)

4.4. Advanced Features 13

https://google.com/?q=vcrpy

vcrpy Documentation, Release 1.7.4

Finally, register your class with VCR to use your new serializer.

import vcr

class BogoSerializer(object):
"""
Must implement serialize() and deserialize() methods
"""
pass

my_vcr = vcr.VCR()
my_vcr.register_serializer('bogo', BogoSerializer())

with my_vcr.use_cassette('test.bogo', serializer='bogo'):
your http here

After you register, you can set the default serializer to your new serializer

my_vcr.serializer = 'bogo'

with my_vcr.use_cassette('test.bogo'):
your http here

4.4.2 Register your own request matcher

Create your own method with the following signature

def my_matcher(r1, r2):

Your method receives the two requests and must return True if they match, False if they don’t.

Finally, register your method with VCR to use your new request matcher.

import vcr

def jurassic_matcher(r1, r2):
return r1.uri == r2.uri and 'JURASSIC PARK' in r1.body

my_vcr = vcr.VCR()
my_vcr.register_matcher('jurassic', jurassic_matcher)

with my_vcr.use_cassette('test.yml', match_on=['jurassic']):
your http here

After you register, you can set the default match_on to use your new matcher

my_vcr.match_on = ['jurassic']

with my_vcr.use_cassette('test.yml'):
your http here

4.4.3 Filter sensitive data from the request

If you are checking your cassettes into source control, and are using some form of authentication in your tests, you
can filter out that information so it won’t appear in your cassette files. There are a few ways to do this:

14 Chapter 4. Contents

vcrpy Documentation, Release 1.7.4

Filter information from HTTP Headers

Use the filter_headers configuration option with a list of headers to filter.

with my_vcr.use_cassette('test.yml', filter_headers=['authorization']):
sensitive HTTP request goes here

Filter information from HTTP querystring

Use the filter_query_parameters configuration option with a list of query parameters to filter.

with my_vcr.use_cassette('test.yml', filter_query_parameters=['api_key']):
requests.get('http://api.com/getdata?api_key=secretstring')

Filter information from HTTP post data

Use the filter_post_data_parameters configuration option with a list of post data parameters to filter.

with my_vcr.use_cassette('test.yml', filter_post_data_parameters=['client_secret']):
requests.post('http://api.com/postdata', data={'api_key': 'secretstring'})

Advanced use of filter_headers, filter_query_parameters and filter_post_data_parameters

In all of the above cases, it’s also possible to pass a list of (key, value) tuples where the value can be any of the
following:

• A new value to replace the original value.

• None to remove the key/value pair. (Same as passing a simple key string.)

• A callable that returns a new value or None.

So these two calls are the same:

original (still works)
vcr = VCR(filter_headers=['authorization'])

new
vcr = VCR(filter_headers=[('authorization', None)])

Here are two examples of the new functionality:

replace with a static value (most common)
vcr = VCR(filter_headers=[('authorization', 'XXXXXX')])

replace with a callable, for example when testing
lots of different kinds of authorization.
def replace_auth(key, value, request):

auth_type = value.split(' ', 1)[0]
return '{} {}'.format(auth_type, 'XXXXXX')

Custom Request filtering

If none of these covers your request filtering needs, you can register a callback that will manipulate the HTTP request
before adding it to the cassette. Use the before_record configuration option to so this. Here is an example that
will never record requests to the /login endpoint.

4.4. Advanced Features 15

vcrpy Documentation, Release 1.7.4

def before_record_cb(request):
if request.path != '/login':

return request

my_vcr = vcr.VCR(
before_record = before_record_cb,

)
with my_vcr.use_cassette('test.yml'):

your http code here

You can also mutate the response using this callback. For example, you could remove all query parameters from any
requests to the ’/login’ path.

def scrub_login_request(request):
if request.path == '/login':

request.uri, _ = urllib.splitquery(response.uri)
return request

my_vcr = vcr.VCR(
before_record=scrub_login_request,

)
with my_vcr.use_cassette('test.yml'):

your http code here

Custom Response Filtering

VCR.py also suports response filtering with the before_record_response keyword argument. It’s usage is
similar to that of before_record:

def scrub_string(string, replacement=''):
def before_record_response(response):

response['body']['string'] = response['body']['string'].replace(string, replacement)
return response

return before_record_response

my_vcr = vcr.VCR(
before_record_response=scrub_string(settings.USERNAME, 'username'),

)
with my_vcr.use_cassette('test.yml'):

your http code here

4.4.4 Decode compressed response

When the decode_compressed_response keyword argument of a VCR object is set to True, VCR will decom-
press “gzip” and “deflate” response bodies before recording. This ensures that these interactions become readable and
editable after being serialized.

Note: Decompression is done before any other specified Custom Response Filtering.

This option should be avoided if the actual decompression of response bodies is part of the functionality of the library
or app being tested.

16 Chapter 4. Contents

vcrpy Documentation, Release 1.7.4

4.4.5 Ignore requests

If you would like to completely ignore certain requests, you can do it in a few ways:

• Set the ignore_localhost option equal to True. This will not record any requests sent to (or responses
from) localhost, 127.0.0.1, or 0.0.0.0.

• Set the ignore_hosts configuration option to a list of hosts to ignore

• Add a before_record callback that returns None for requests you want to ignore

Requests that are ignored by VCR will not be saved in a cassette, nor played back from a cassette. VCR will completely
ignore those requests as if it didn’t notice them at all, and they will continue to hit the server as if VCR were not there.

4.4.6 Custom Patches

If you use a custom HTTPConnection class, or otherwise make http requests in a way that requires additional
patching, you can use the custom_patches keyword argument of the VCR and Cassette objects to patch those
objects whenever a cassette’s context is entered. To patch a custom version of HTTPConnection you can do
something like this:

import where_the_custom_https_connection_lives
from vcr.stubs import VCRHTTPSConnection
my_vcr = config.VCR(custom_patches=((where_the_custom_https_connection_lives, 'CustomHTTPSConnection', VCRHTTPSConnection),))

@my_vcr.use_cassette(...)

4.4.7 Automatic Cassette Naming

VCR.py now allows the omission of the path argument to the use_cassette function. Both of the following are now
legal/should work

@my_vcr.use_cassette
def my_test_function():

...

@my_vcr.use_cassette()
def my_test_function():

...

In both cases, VCR.py will use a path that is generated from the provided test function’s name. If no
cassette_library_dir has been set, the cassette will be in a file with the name of the test function in di-
rectory of the file in which the test function is declared. If a cassette_library_dir has been set, the cassette
will appear in that directory in a file with the name of the decorated function.

It is possible to control the path produced by the automatic naming machinery by customizing the
path_transformer and func_path_generator vcr variables. To add an extension to all cassette names,
use VCR.ensure_suffix as follows:

my_vcr = VCR(path_transformer=VCR.ensure_suffix('.yaml'))

@my_vcr.use_cassette
def my_test_function():

4.4. Advanced Features 17

vcrpy Documentation, Release 1.7.4

4.5 API

4.5.1 config

4.5.2 cassette

class vcr.cassette.Cassette(path, serializer=<module ‘vcr.serializers.yamlserializer’ from
‘/home/docs/checkouts/readthedocs.org/user_builds/vcrpy/envs/v1.10.3/lib/python3.4/site-
packages/vcrpy-1.10.3-py3.4.egg/vcr/serializers/yamlserializer.py’>,
record_mode=’once’, match_on=(<function uri at 0x7fdc21e3a378>,
<function method at 0x7fdc21e0be18>), before_record_request=None,
before_record_response=None, custom_patches=(), inject=False)

A container for recorded requests and responses

all_played
Returns True if all responses have been played, False otherwise.

append(request, response)
Add a request, response pair to this cassette

classmethod load(**kwargs)
Instantiate and load the cassette stored at the specified path.

play_response(request)
Get the response corresponding to a request, but only if it hasn’t been played back before, and mark it as
played

responses_of(request)
Find the responses corresponding to a request. This function isn’t actually used by VCR internally, but is
provided as an external API.

class vcr.cassette.CassetteContextDecorator(cls, args_getter)
Context manager/decorator that handles installing the cassette and removing cassettes.

This class defers the creation of a new cassette instance until the point at which it is installed by context manager
or decorator. The fact that a new cassette is used with each application prevents the state of any cassette from
interfering with another.

Instances of this class are NOT reentrant as context managers. However, functions that are decorated by
CassetteContextDecorator instances ARE reentrant. See the implementation of __call__ on this
class for more details. There is also a guard against attempts to reenter instances of this class as a context
manager in __exit__.

4.5.3 matchers

4.5.4 filters

vcr.filters.decode_response(response)

If the response is compressed with gzip or deflate:

1. decompress the response body

2. delete the content-encoding header

3. update content-length header to decompressed length

18 Chapter 4. Contents

vcrpy Documentation, Release 1.7.4

vcr.filters.remove_headers(request, headers_to_remove)
Wrap replace_headers() for API backward compatibility.

vcr.filters.remove_post_data_parameters(request, post_data_parameters_to_remove)
Wrap replace_post_data_parameters() for API backward compatibility.

vcr.filters.remove_query_parameters(request, query_parameters_to_remove)
Wrap replace_query_parameters() for API backward compatibility.

vcr.filters.replace_headers(request, replacements)
Replace headers in request according to replacements. The replacements should be a list of (key, value) pairs
where the value can be any of:

1.A simple replacement string value.

2.None to remove the given header.

3.A callable which accepts (key, value, request) and returns a string value or None.

vcr.filters.replace_post_data_parameters(request, replacements)
Replace post data in request–either form data or json–according to replacements. The replacements should be a
list of (key, value) pairs where the value can be any of:

1.A simple replacement string value.

2.None to remove the given header.

3.A callable which accepts (key, value, request) and returns a string value or None.

vcr.filters.replace_query_parameters(request, replacements)
Replace query parameters in request according to replacements. The replacements should be a list of (key,
value) pairs where the value can be any of:

1.A simple replacement string value.

2.None to remove the given header.

3.A callable which accepts (key, value, request) and returns a string value or None.

4.5.5 request

class vcr.request.HeadersDict(data=None, **kwargs)
There is a weird quirk in HTTP. You can send the same header twice. For this reason, headers are represented
by a dict, with lists as the values. However, it appears that HTTPlib is completely incapable of sending the same
header twice. This puts me in a weird position: I want to be able to accurately represent HTTP headers in cas-
settes, but I don’t want the extra step of always having to do [0] in the general case, i.e. request.headers[’key’][0]

In addition, some servers sometimes send the same header more than once, and httplib can deal with this
situation.

Futhermore, I wanted to keep the request and response cassette format as similar as possible.

For this reason, in cassettes I keep a dict with lists as keys, but once deserialized into VCR, I keep them as plain,
naked dicts.

class vcr.request.Request(method, uri, body, headers)
VCR’s representation of a request.

4.5. API 19

vcrpy Documentation, Release 1.7.4

4.5.6 serialize

4.5.7 patch

Utilities for patching in cassettes

4.6 Debugging

VCR.py has a few log messages you can turn on to help you figure out if HTTP requests are hitting a real server or
not. You can turn them on like this:

import vcr
import requests
import logging

logging.basicConfig() # you need to initialize logging, otherwise you will not see anything from vcrpy
vcr_log = logging.getLogger("vcr")
vcr_log.setLevel(logging.INFO)

with vcr.use_cassette('headers.yml'):
requests.get('http://httpbin.org/headers')

The first time you run this, you will see:

INFO:vcr.stubs:<Request (GET) http://httpbin.org/headers> not in cassette, sending to real server

The second time, you will see:

INFO:vcr.stubs:Playing response for <Request (GET) http://httpbin.org/headers> from cassette

If you set the loglevel to DEBUG, you will also get information about which matchers didn’t match. This can help
you with debugging custom matchers.

4.7 Contributing

4.7.1 Running VCR’s test suite

The tests are all run automatically on Travis CI, but you can also run them yourself using py.test and Tox. Tox will
automatically run them in all environments VCR.py supports. The test suite is pretty big and slow, but you can tell tox
to only run specific tests like this:

tox -e py27requests -- -v -k "'test_status_code or test_gzip'"

This will run only tests that look like test_status_code or test_gzip in the test suite, and only in the python
2.7 environment that has requests installed.

Also, in order for the boto tests to run, you will need an AWS key. Refer to the boto documentation for how to set this
up. I have marked the boto tests as optional in Travis so you don’t have to worry about them failing if you submit a
pull request.

20 Chapter 4. Contents

https://travis-ci.org/kevin1024/vcrpy
http://pytest.org/
http://tox.testrun.org/
https://boto.readthedocs.io/en/latest/getting_started.html

vcrpy Documentation, Release 1.7.4

4.8 Changelog

• 1.10.3 Fix some issues with asyncio and params (thanks @anovikov1984 and @lamenezes), Fix some issues
with cassette serialize / deserialize and empty response bodies (thanks @gRoussac and @dz0ny)

• 1.10.2 Fix 1.10.1 release - add aiohttp support back in

• 1.10.1 [bad release] Fix build for Fedora package + python2 (thanks @puiterwijk and @lamenezes)

• 1.10.0 Add support for aiohttp (thanks @lamenezes)

• 1.9.0 Add support for boto3 (thanks @desdm, @foorbarna). Fix deepcopy issue for response headers when
decode_compressed_response is enabled (thanks @nickdirienzo)

• 1.8.0 Fix for Serialization errors with JSON adapter (thanks @aliaksandrb). Avoid concatenating bytes with
strings (thanks @jaysonsantos). Exclude __pycache__ dirs & compiled files in sdist (thanks @koobs). Fix
Tornado support behavior for Tornado 3 (thanks @abhinav). decode_compressed_response option and filter
(thanks @jayvdb).

• 1.7.4 [#217] Make use_cassette decorated functions actually return a value (thanks @bcen). [#199] Fix path
transfromation defaults. Better headers dictionary management.

• 1.7.3 [#188] additional_matchers kwarg on use_cassette. [#191] Actually support passing multiple
before_record_request functions (thanks @agriffis).

• 1.7.2 [#186] Get effective_url in tornado (thanks @mvschaik), [#187] Set request_time on Response object in
tornado (thanks @abhinav).

• 1.7.1 [#183] Patch fetch_impl instead of the entire HTTPClient class for Tornado (thanks @abhinav).

• 1.7.0 [#177] Properly support coroutine/generator decoration. [#178] Support distribute (thanks @graingert).
[#163] Make compatibility between python2 and python3 recorded cassettes more robust (thanks @gward).

• 1.6.1 [#169] Support conditional requirements in old versions of pip, Fix RST parse errors generated by pandoc,
[Tornado] Fix unsupported features exception not being raised, [#166] content-aware body matcher.

• 1.6.0 [#120] Tornado support (thanks @abhinav), [#147] packaging fixes (thanks @graingert), [#158] allow
filtering post params in requests (thanks @MrJohz), [#140] add xmlrpclib support (thanks @Diaoul).

• 1.5.2 Fix crash when cassette path contains cassette library directory (thanks @gazpachoking).

• 1.5.0 Automatic cassette naming and ‘application/json’ post data filtering (thanks @marco-santamaria).

• 1.4.2 Fix a bug caused by requests 2.7 and chunked transfer encoding

• 1.4.1 Include README, tests, LICENSE in package. Thanks @ralphbean.

• 1.4.0 Filter post data parameters (thanks @eadmundo), support for posting files through requests, inject_cassette
kwarg to access cassette from use_cassette decorated function, with_current_defaults actually
works (thanks @samstav).

• 1.3.0 Fix/add support for urllib3 (thanks @aisch), fix default port for https (thanks @abhinav).

• 1.2.0 Add custom_patches argument to VCR/Cassette objects to allow users to stub custom classes when cas-
settes become active.

• 1.1.4 Add force reset around calls to actual connection from stubs, to ensure compatibility with the version of
httplib/urlib2 in python 2.7.9.

• 1.1.3 Fix python3 headers field (thanks @rtaboada), fix boto test (thanks @telaviv), fix new_episodes record
mode (thanks @jashugan), fix Windows connectionpool stub bug (thanks @gazpachoking), add support for
requests 2.5

• 1.1.2 Add urllib==1.7.1 support. Make json serialize error handling correct Improve logging of match failures.

4.8. Changelog 21

vcrpy Documentation, Release 1.7.4

• 1.1.1 Use function signature preserving wrapt.decorator to write the decorator version of use_cassette
in order to ensure compatibility with py.test fixtures and python 2. Move all request filtering into the
before_record_callable.

• 1.1.0 Add before_record_response. Fix several bugs related to the context management of cassettes.

• 1.0.3: Fix an issue with requests 2.4 and make sure case sensitivity is consistent across python versions

• 1.0.2: Fix an issue with requests 2.3

• 1.0.1: Fix a bug with the new ignore requests feature and the once record mode

• 1.0.0: BACKWARDS INCOMPATIBLE: Please see the ‘upgrade’ section in the README. Take a look at the
matcher section as well, you might want to update your match_on settings. Add support for filtering sensitive
data from requests, matching query strings after the order changes and improving the built-in matchers, (thanks
to @mshytikov), support for ignoring requests to certain hosts, bump supported Python3 version to 3.4, fix
some bugs with Boto support (thanks @marusich), fix error with URL field capitalization in README (thanks
@simon-weber), added some log messages to help with debugging, added all_played property on cassette
(thanks @mshytikov)

• 0.7.0: VCR.py now supports Python 3! (thanks @asundg) Also I refactored the stub connections quite a bit
to add support for the putrequest and putheader calls. This version also adds support for httplib2 (thanks
@nilp0inter). I have added a couple tests for boto since it is an http client in its own right. Finally, this version
includes a fix for a bug where requests wasn’t being patched properly (thanks @msabramo).

• 0.6.0: Store response headers as a list since a HTTP response can have the same header twice (happens with
set-cookie sometimes). This has the added benefit of preserving the order of headers. Thanks @smallcode for
the bug report leading to this change. I have made an effort to ensure backwards compatibility with the old
cassettes’ header storage mechanism, but if you want to upgrade to the new header storage, you should delete
your cassettes and re-record them. Also this release adds better error messages (thanks @msabramo) and adds
support for using VCR as a decorator (thanks @smallcode for the motivation)

• 0.5.0: Change the response_of method to responses_of since cassettes can now contain more than one
response for a request. Since this changes the API, I’m bumping the version. Also includes 2 bugfixes: a better
error message when attempting to overwrite a cassette file, and a fix for a bug with requests sessions (thanks
@msabramo)

• 0.4.0: Change default request recording behavior for multiple requests. If you make the same request multiple
times to the same URL, the response might be different each time (maybe the response has a timestamp in it or
something), so this will make the same request multiple times and save them all. Then, when you are replaying
the cassette, the responses will be played back in the same order in which they were received. If you were
making multiple requests to the same URL in a cassette before version 0.4.0, you might need to regenerate
your cassette files. Also, removes support for the cassette.play_count counter API, since individual requests
aren’t unique anymore. A cassette might contain the same request several times. Also removes secure overwrite
feature since that was breaking overwriting files in Windows, and fixes a bug preventing request’s automatic
body decompression from working.

• 0.3.5: Fix compatibility with requests 2.x

• 0.3.4: Bugfix: close file before renaming it. This fixes an issue on Windows. Thanks @smallcode for the fix.

• 0.3.3: Bugfix for error message when an unreigstered custom matcher was used

• 0.3.2: Fix issue with new config syntax and the match_on parameter. Thanks, @chromy!

• 0.3.1: Fix issue causing full paths to be sent on the HTTP request line.

• 0.3.0: Backwards incompatible release - Added support for record modes, and changed the default recording
behavior to the “once” record mode. Please see the documentation on record modes for more. Added support
for custom request matching, and changed the default request matching behavior to match only on the URL
and method. Also, improved the httplib mocking to add support for the HTTPConnection.send() method.

22 Chapter 4. Contents

vcrpy Documentation, Release 1.7.4

This means that requests won’t actually be sent until the response is read, since I need to record the entire request
in order to match up the appropriate response. I don’t think this should cause any issues unless you are sending
requests without ever loading the response (which none of the standard httplib wrappers do, as far as I know.
Thanks to @fatuhoku for some of the ideas and the motivation behind this release.

• 0.2.1: Fixed missing modules in setup.py

• 0.2.0: Added configuration API, which lets you configure some settings on VCR (see the README). Also,
VCR no longer saves cassettes if they haven’t changed at all and supports JSON as well as YAML (thanks
@sirpengi). Added amazing new skeumorphic logo, thanks @hairarrow.

• 0.1.0: backwards incompatible release - delete your old cassette files: This release adds the ability to access the
cassette to make assertions on it, as well as a major code refactor thanks to @dlecocq. It also fixes a couple
longstanding bugs with redirects and HTTPS. [#3 and #4]

• 0.0.4: If you have libyaml installed, vcrpy will use the c bindings instead. Speed up your tests! Thanks @dlecocq

• 0.0.3: Add support for requests 1.2.3. Support for older versions of requests dropped (thanks @vitormazzi and
@bryanhelmig)

• 0.0.2: Add support for requests / urllib3

• 0.0.1: Initial Release

• genindex

• modindex

• search

4.8. Changelog 23

vcrpy Documentation, Release 1.7.4

24 Chapter 4. Contents

Python Module Index

v
vcr.cassette, 18
vcr.config, 18
vcr.filters, 18
vcr.matchers, 18
vcr.patch, 20
vcr.request, 19
vcr.serialize, 20

25

vcrpy Documentation, Release 1.7.4

26 Python Module Index

Index

A
all_played (vcr.cassette.Cassette attribute), 18
append() (vcr.cassette.Cassette method), 18

C
Cassette (class in vcr.cassette), 18
CassetteContextDecorator (class in vcr.cassette), 18

D
decode_response() (in module vcr.filters), 18

H
HeadersDict (class in vcr.request), 19

L
load() (vcr.cassette.Cassette class method), 18

P
play_response() (vcr.cassette.Cassette method), 18

R
remove_headers() (in module vcr.filters), 18
remove_post_data_parameters() (in module vcr.filters),

19
remove_query_parameters() (in module vcr.filters), 19
replace_headers() (in module vcr.filters), 19
replace_post_data_parameters() (in module vcr.filters),

19
replace_query_parameters() (in module vcr.filters), 19
Request (class in vcr.request), 19
responses_of() (vcr.cassette.Cassette method), 18

V
vcr.cassette (module), 18
vcr.config (module), 18
vcr.filters (module), 18
vcr.matchers (module), 18
vcr.patch (module), 20
vcr.request (module), 19
vcr.serialize (module), 20

27

	Rationale
	Support
	License
	Contents
	Installation
	Usage
	Configuration
	Advanced Features
	API
	Debugging
	Contributing
	Changelog

	Python Module Index

